Understanding the Requirements Imposed by
Programming Model Middlware on a Common
Communication Subsystem*

Darius Buntinas and William Gropp

Mathematics and Computer Science Division
Argonne National Laboratory
{buntinas, gropp}@mcs.anl.gov

Abstract. In high-performance parallel computing, most programming
model middleware libraries and runtime systems use a communication
subsystem to abstract the lower level network layer. The functionality re-
quired of a communication subsystem depends largely on the particular
programming model implemented by the middleware. In order to max-
imize performance, middleware libraries and runtime systems typically
implement their own communication subsystems that are specially tuned
for the middleware, rather than use an existing communication subsys-
tem. This leads to duplicated effort and prevents different middleware
libraries from being used by the same application in hybrid programming
models. In this paper we describe features required by various middle-
ware libraries as well as some desirable features that would make it easier
to port a middleware library to the communication subsystem, and al-
low the middleware to make use of high-performance features provided
by some networking layers. We evaluate whether existing communication
subsystems support these features efficiently. We show that none of the
existing communication subsystems that we evaluated support all of the
features.

1 Introduction

In high-performance parallel computing, most programming model middleware
libraries and runtime systems use a communication subsystem to abstract the
lower level network layer, providing portability to different architectures and
interconnects, and simplifying implementation. The functionality required of a
communication subsystem depends largely on the particular programming model
implemented by the middleware. For example, a middleware library for the mes-
sage passing model would require operations that optimize data transfer of ob-
jects located anywhere in a process’ address space, whereas a middleware runtime
system for a global address space language would require optimized transfer of
smaller data objects located in a special memory region allocated at initializa-
tion.

* This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.

Application]

(MPICH2, GA Toolkit, UPC Runtime)

Communi cation Subsystem
(ARMCI, GASNet, Portals)

E
[Middleware]
[
[

am | [ea | [o | aes

Fig. 1. Software layers of current high-performance computing systems

Because of these differences, most middleware libraries and runtime systems
implement their own communication subsystems, rather than use one from an-
other middleware library. But, despite the differences in requirements, the com-
munication subsystems have many common features, such as bootstrapping, re-
mote memory access (RMA) operations, etc.. Implementing and maintaining
a different communication subsystem for each middleware leads to duplicated
effort. Furthermore, a common communication subsystem would be needed for
hybrid programming models, where, for example, a program would use both MPI
and UPC operations. A common communication subsystem would provide the
best performance to both programming models, and avoid possible deadlocks
when the different middleware libraries block for messages.

In this paper we describe features required by various middleware libraries as
well as some desirable features that would make it easier to port a middleware
library to the communication subsystem, and allow the middleware to make use
of high-performance features provided by some networking layers. We evaluate
whether existing communication subsystems support these features efficiently.
We show that none of the existing communication subsystems that we evaluated
support all of the features. Furthermore we found no conflicting requirements,
which indicates that a communication subsystem can be designed that would
efficiently support all of the programming models that we examine in this pa-
per. In [I] we present our design of a common communication subsystem which
addresses all of the requirements we identified in this paper.

The rest of this paper is organized as follows. In Section] we introduce
the existing communication subsystems which we will evaluate. In Section [3 we
identify the critical design issues necessary to support the various programming
models. We conclude and present future work in Section [l

1.1 Software Layers of Parallel Computing Systems

Figure [I] shows the software layers of a typical high-performance parallel com-
puting system. The application, at the top layer, is written using a particular
programming model, e.g., message passing, remote memory, or Global Address
Space (GAS) language. The middleware, in the next layer, is the implemen-
tation of the programming model and defines the programming interface, e.g.,
MPICH?2 [213], Global Arrays (GA) toolkit [4], or the Berkeley UPC runtime [5].

The middleware often implements a standard API, such as MPI-2 [6], GA [7],
or UPC [§].

In order to provide portability to different interconnects, middleware will
typically be implemented over a communication subsystem, in the third layer,
which abstracts the low level interconnect API. Examples of communication
subsystems are CH3 for MPICH2, ARMCI [9] for the Global Arrays toolkit,
and GASNet [I0] for the Berkeley UPC runtime. At the lowest layer is the
interconnect library, which is usually provided by the interconnect vendor, such
as GM/Myrinet [I1/12] and InfiniBand (IBA) [I3].

2 Typical Communication Subsystems

In this section, we describe several communication subsystems which are used by
different programming models. These are ARMCI [9], GASNet [10], LAPT [I4],
Portals [15], and MPI-2 [6].

While MPI-2 can be considered a programming model middleware, we are
including it as a communication subsystem because it has many features that
would make it an attractive candidate for a common communication subsystem.
In fact, for this reason, some communication subsystems, such as GASNet, have
been implemented on top of an MPI implementation.

ARMCI — The Aggregate Remote Memory Copy Interface (ARMCI) lib-
rary [9] is the communication subsystem for Global Arrays.

GASNet — GASNet [I0] is designed to support parallel global address space
(GAS) languages and is the communication subsystem for the Berkeley UPC
runtime.

LAPI — IBM’s Low-level Application Programming Interface (LAPI) [14]
is a proprietary message passing API that provides RMA and active message
operations.

Portals — Portals is the communication subsystem for the CPlant project
at Sandia National Labs [I6]. The main focus of the design of Portals [15] was
to support MPI.

MPI-2 — MPI-2 [6] is an extension of the original Message Passing Interface
(MPI) standard, providing one-sided remote memory operations.

3 Design Issues for Communication Subsystems

In this section, we identify important issues in designing communication subsys-
tems to support different programming models. We will also discuss how each
communication subsystem described above either supports or fails to support the
features. We will concentrate on the features required by MPI-2, Global Arrays,
and UPC.

It is not our intention to decide whether one communication subsystem is
better than another, as each is very well suited for the particular purpose for
which it was written. Rather, we want to demonstrate that none of these com-
munication subsystems are able to efficiently support all of the programming
models.

We make certain assumptions about the architecture. First, we assume that
the interconnect is reliable. This is a reasonable assumption as most modern
networks provide reliable message delivery. Second, we assume that the system
is cache-coherent. Although the MPI-2 RMA model was designed to support
non-cache-coherent systems, we won’t consider those in this paper.

We break the issues we have identified into two sections: required features
and desired features. Communication subsystems which lack a required feature
cannot effectively be used to support a particular programming model. Desired
features are features which, when implementing a programming model on top
of the communication subsystem, make the implementation simpler or more
efficient.

3.1 Required Features

Remote Memory Access Operations. RMA operations allow a process to
transfer data between its local memory and the memory of another remote pro-
cess without involving that remote process. These operations are especially im-
portant for global address space and remote memory programming models, and
for message passing applications which have irregular communication patterns.
All of the communication subsystems we are examining have some form of RMA
operations.

Important RMA operations are Put, Get and Accumulate. In a Put opera-
tion data is transferred from the initiating process’ memory to the target process’
memory. Data is transferred in the opposite direction in a Get operation. An Ac-
cumulate operation is similar to a Put operation, except an arithmetic operation
is performed on the incoming data and the data is stored at the target buffer.

It is important for RMA operations to be non-blocking to allow for better
overlap of communication and computation. A fence operation is also needed to
ensure that RMA operations have completed at a particular remote process. In
addition a global fence operation, which would be collective and ensure that all
RMA operations have completed at every process, is useful.

All of the communication subsystems we are examining support RMA oper-
ations, however some impose restrictions on the memory that can be used for
those operations. We identify these four classes of RMA memory in order from
most restrictive to least restrictive.

1. RMA memory defined collectively at initialization time

2. RMA memory defined collectively at any time during execution

3. RMA memory defined non-collectively at any time during execution
4. All of process memory is RMA memory

ARMCI supports the second class of RMA memory. Memory which is acces-
sible by RMA operations must be allocated using a collective memory allocation
function.

GASNet supports the third class of RMA memory, when compiled with the
GASNET_SEGMENT _FAST and GASNET_SEGMENT_LARGE flags. These flags allow for
optimized implementations of GASNet, but restrict the RMA memory to that

which individual processes can allocate from a pool of memory set aside at ini-
tialization. The size of this pool is passed as a parameter at initialization. If
GASNet is compiled with the GASNET_SEGMENT_EVERYTHING flag, it would sup-
port the fourth class. But this flexibility may have a performance penalty in
some implementations.

MPI-2 also supports the third class of RMA memory. MPI-2 RMA operations
are either active target or passive target operations. In active target operations,
the target process is actively involved in performing the RMA operation, while in
passive target operations, the target process is not. The MPI-2 standard allows
the implementation to require that memory used for passive target operations
be allocated with a special memory allocation function.

A group of MPI processes will collectively create a window which identifies
the memory region at each process that can be accessed by MPI-2 RMA op-
erations. The individual memory regions do not have to be the same size, and
can even have zero length. This memory may be statically defined or dynami-
cally allocated memory but the allocation is not a collective operation, i.e., the
processes don’t all have to allocate the memory at the same time.

LAPI and Portals support the fourth class of RMA memory. RMA operations
can be performed using any process memory.

In the next subsections we will discuss requirements which are specific to
supporting MPI-2 RMA features, GAS language and remote memory models,
and MPT large two-sided messages.

MPI-2 RMA support. In order to support MPI-2 RMA operations, the com-
munication subsystem needs to support at least the third class of RMA memory
for passive-mode and the fourth class for efficient active mode operations. This
means that ARMCI RMA operations cannot support MPI-2 RMA operations,
because in ARMCI, RMA memory must be collectively allocated.

GASNet RMA operations cannot support MPI-2 active mode RMA oper-
ations when compiled with GASNET_SEGMENT _FAST or GASNET_SEGMENT_LARGE
flags. Only when GASNet is compiled with the GASNET_SEGMENT_EVERYTHING
flag would it be able to support MPI-2 active mode RMA operations. But, as
mentioned before, there may be a performance penalty in some implementations.

Because both Portals and LAPI support the fourth class of RMA memory,
they can support both active and passive-mode RMA operations efficiently.

GAS language and remote memory model support. GAS language and
remote memory model runtime systems require the ability to make concurrent
conflicting RMA accesses to the same memory region. Similarly they require
the ability to make local load/store accesses to a memory region concurrently
with RMA accesses. The MPI-2 standard makes such concurrent accesses er-
roneous. Such restrictions were added to the MPI-2 standard because MPI-2
is implemented as a library, and so cannot guard against accesses of which it
is unaware. However, this makes MPI-2 unable to support GAS language and
remote memory models. These issues are discussed in detail in [I7].

Another important feature when the interconnect is very fast, or for shared
memory implementations, is the ability to allow the source of a Put or the target

of a Get operation to be a register, rather than a memory location. This avoids
having to copy the value through memory.

Efficient Transfer of Large MPI Two-Sided Messages. In MPI, two-sided
message operations involve the sender calling MPI_Send () and the receiver calling
MPI Recv() which matches the MPI_Send () from the sender. The sender specifies
the source buffer, and the receiver specifies the destination buffer. In a typical
MPI implementation, small messages are sent eagerly by the sender and buffered
at the receiver until a matching receive is called, and the destination buffer is
known. This method requires that the data be copied several times which makes
it impractical for large messages. Communication subsystems supporting MPI
will typically transfer data for large messages using RMA operations.

However, RMA operations cannot be used directly because the sender doesn’t
know the destination address at the receiver, and the receiver doesn’t know the
source address at the sender. A rendezvous protocol is used to send either the
destination buffer information to the sender or the source buffer information to
the receiver. Once the send and receive calls are matched, one side can use RMA
operations to transfer the data directly between the two buffers.

Because the source and destination buffers can be located anywhere in a
process’ address space, in order to be able to use RMA operations to support
the efficient transfer of large two-sided messages, the communication subsystem
would have to support the fourth class of RMA memory. Only LAPI and Portals
are able to support this efficiently. As noted previously, GASNet can only support
this class when compiled with the GASNET_SEGMENT_EVERYTHING flag, which may
impose a performance penalty.

There are other methods for transferring large two-sided messages, which
most likely involve a rendezvous-like protocol internal to the communication
subsystem. An example of this is the active message interface of LAPI. When
an active message is received a handler is called at the receiver. The handler
determines the destination address and passes it to LAPI which transfers the
data directly into the buffer.

3.2 Desired Features

Active Messages. Using active messages [I8], the sender specifies a function
to be executed at the receiver when the message is received. This handler can
perform whatever processing is necessary on the message data, such as perform
message matching operations in MPI, or perform an accumulate operation in
Global Arrays.

Before active messages can be used, the active message handlers must be
registered. The registration process sets up the mechanism through which the
receiving process identifies which handler to execute when a message arrives.
In order to allow multiple upper layer libraries to use the same communication
subsystem at the same time, each library needs to be able to register its own
handlers without interfering with the other libraries.

Active messages are provided in GASNet and LAPI. GASNet requires that
all handlers be registered at the same time. This means that only a single library
can use GASNet at a time.

Symmetric Allocation of Shared Memory Regions. In GAS language
and remote memory model runtime systems where shared objects are allocated
collectively, it would be beneficial to allow symmetrically allocated memory re-
gions. In a symmetrically allocated region, the base addresses for the regions at
each process are the same, allowing the upper layer to optimize remote pointer
translation.

In-Order Message Delivery. In order message delivery is required for message
passing programming models. However, for those programming models which
don’t require in-order messages, a message ordering mechanism can add a per-
formance penalty. In fact, in some cases performance can even be improved by
reordering and coalescing messages. A common communication subsystem would
need to provide a way to order messages when required, but allow them to be
reordered otherwise.

In MPI-2, two-sided messages are ordered, but RMA operations are not guar-
anteed to be ordered. LAPI, GASNet, and ARMCI do not guarantee message
order. While a fence operation can be used to force ordering of messages, it
would not be efficient to perform a fence after every message. Portals messages
are all ordered.

Noncontiguous Data. Modern interconnects, such as IBA [I3] and Quad-
rics [19], support transferring noncontiguous data. In order to take advantage
of this functionality, the communication subsystem itself must support noncon-
tiguous data.

There are several ways that the upper layer can describe the data layout
to the communication subsystem. The best method to use in describing the
data layout depends on how the data is actually laid out. The most general
way is to use an I/O vector (IOV), which is an array of offsets and lengths, each
describing the location of a piece of the data. However, the size of the description
itself can grow with the length of the data, and can even exceed the size of the
data itself for sparse data. For specifying data which is distributed in same
sized blocks spaced evenly apart, a strided description can be more efficient.
In a strided description the block length is specified along with the number
of blocks and the distance between them. This description is more compact,
but less general. Blockindezed describes data which is in fixed sized blocks, but
not necessarily evenly distributed. A block size and an array of offsets defines
blockindexed data layout. For data with uniform block size, blockindexed is a
more compact representation than IOV, and is more general than strided. These
descriptions can also be nested to describe more complex or multidimensional
data distributions.

LAPI, ARMCI and MPI-2 support transfer of noncontiguous data. In LAPI,
noncontiguous data can only be specified using the I/O vector format. ARMCI

Table 1. Feature summary of the communication subsystems.

é{%%
> W & 3
¥ S & &
eQ’v a Qo N t@x \5;;
o Ob o N " o 2
P © 2 &%
& P & o Nz 53 S o
x> & . & NS e o5 &
Ny o~ & N s 2 o N
& & SO RN
© 9 ARSI 0 e ¥ & X
F &P &
¥ < Yoo R
ARMCI ° ° V, S °
GASNet o ° o Y
LAPI ° ° ° ° Vv
Portals . . . ° . .
MPI-2 e V,S,B o

*V =1/0 vector; S = strided; B = blockindexed

supports both IOV and strided formats. MPI-2 supports MPI datatypes, which
allow the application to describe the data layout recursively from variations of
I/0 vector, strided, and blockindexed formats. GASNet and Portals only support
contiguous data transfer.

3.3 Summary of Design Issues

Table [[l summarizes the features described above and whether each is supported
by the communication subsystems. There are other issues such as supporting
dynamic processes, collective communication, thread safety, and heterogeneous
system support, that are also important, but due to space limitations we cannot
discuss them in detail. We can see from Table[l that none of the communication
subsystems we studied support all of the features necessary for message passing,
remote memory, and GAS language programming models. The table also shows
a column for portability. While portability is a main goal for ARMCI, GASNet,
Portals, and MPI-2, LAPI is available only on IBM systems.

While the lack of some of the features we described does not necessarily
mean that a middleware cannot be implemented over a particular communica-
tion subsystem, the implementations would be less efficient. In fact, MPI has
been implemented over LAPI[20], UPC has been implemented over MPI[5], and
MPI-2 has been implemented over GASNet[2], but these implementations are
not as efficient as they could be had all of the features been supported by the
communication subsystem.

4 Discussion and Future Work

A common communication subsystem can reduce the duplicated effort to support
communication subsystems for individual programming models. In addition the

development time for new middleware libraries can be reduced by building the
library on top of the common communication subsystem, and allowing it to take
advantage of the communication subsystem’s highly tuned features. In this paper
we have demonstrated that no existing communication subsystem has all of the
features we described. Furthermore, we have shown that there are no mutually
exclusive requirements, indicating that a common communication subsystem can
be implemented. We are, in fact, currently working on implementing a prototype
of a common communication subsystem, and have described our design in [I].

In this paper we have only considered support for programming models.
High performance parallel I/0O libraries have different communication subsystem
requirements than do programming model libraries [21]. We intend to examine
what additional features a communication subsystem would need in order to
support parallel I/0O libraries.

Acknowledgments

We would like to thank Rusty Lusk, Rajeev Thakur, Rob Ross, Brian Toonen
and Guillaume Mercier for their valuable comments and suggestions.

References

1. Buntinas, D., Gropp, W.: Designing a common communication subsystem. In:
EuroPVM/MPI. (2005) Submitted for review to EuroPVM/MPI 2005. Available
at http://WWW.mcs.anl.gov/f)untinas/papers/europvmmpiZOOE)—1.pdf.

2. Argonne National Laboratory: MPICH2. (http://www.mcs.anl.gov/mpi/mpich2)

3. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high-performance, portable imple-
mentation of the MPI message passing interface standard. Parallel Computing 22
(1996) 789-828

4. Pacific Northwest National Laboratory: Global arrays toolkit. (http://www.emsl.
pnl.gov/docs/global /ga.html)

5. Lawrence Berkeley National Laboratory and University of California Barkeley:
Berkeley UPC runtime. (http://upc.lbl.gov)

6. Message Passing Interface Forum: MPI-2: Extensions to the Message-Passing In-
terface. (1997)

7. Nieplocha, J., Harrison, R.J., Littlefield, R.L.: Global Arrays: A portable shared
memory programming model for distributed memory computers. In: Supercom-
puting 94. (1994)

8. Carlson, W.W., Draper, J.M., Culler, D.E., Yelick, K., Brooks, E., Warren, K.:
Introduction to UPC and language specification. Technical Report CCS-TR-99-
157, Center for Computing Sciences, IDA, Bowie, MD (1999)

9. Nieplocha, J., Carpenter, B.: ARMCI: A portable remote memory copy library
for distributed array libraries and compiler run-time systems. 3rd Workshop on
Runtime Systems for Parallel Programming (RTSPP) of International Parallel Pro-
cessing Symposium IPPS/SPDP 99 (1999)

10. Bonachea, D.: GASNet specification, v1.1. Technical Report CSD-02-1207, Uni-
versity of California, Berkeley (2002)

11. Myricom: (The GM-2 Message Passing System — the reference guide to the GM-2
API) http://www.myri.com/scs/GM-2/doc/refman.pdf.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Boden, N.J., Cohen, D., Felderman, R.E., Kulawik, A.E., Seitz, C.L., Seizovic, J.,
Su, W.: Myrinet - A gigabit per second local area network. In: IEEE Micro. (1995)
29-36

InfiniBand Trade Association: (InfiniBand Architecture Specification) http://www
.nfinibandta.com.

International Business Machines: RSCT for AIX 5L LAPI Programming Guide.
Second edn. (2004) SA22-7936-01.

Brightwell, R., Riesen, R., Lawry, B., Maccabe, A.B.: Portals 3.0: Protocol building
blocks for low overhead communication. In: Proceedings of the 2002 Workshop on
Communication Architecture for Clusters (CAC). (2002)

Riesen, R., Brightwell, R., Fisk, L.A., Hudson, T., Otto, J., Maccabe, A.B.: Cplant.
In: Proceedings of the Second Extreme Linux workshop at the 1999 USENIX An-
nual Technical Conference. (1999)

Bonachea, D., Duell, J.: Problems with using MPI 1.1 and 2.0 as compila-
tion targets for parallel language implementations. In: 2nd Workshop on Hard-
ware/Software Support for High Performance Scientific and Engineering Comput-
ing, SHPSEC-PACT03. (2003)

von Eicken, T., Culler, D.E., Goldstein, S.C., Schauser, K.E.: Active messages: A
mechanism for integrated communication and computation. In: Proceedings of the
19th International Symposium on Computer Architecture. (1992) 256-266
Quadrics Supercomputers World Ltd.: QsNet high performance interconnect.
(http://www.quadrics.com/website/pdf/qgsnet.pdf)

Banikazemi, M., Govindaraju, R.K., Blackmore, R., Panda, D.K.: Implementing
Efficient MPI on LAPI for IBM RS/6000 SP Systems: Experiences and Perfor-
mance Evaluation. In: Proceedings of the 13th International Parallel Processing
Symposium. (1999) 183-190

Carns, P.H., Ligon III, W.B., Ross, R.B., Wyckoff, P.. BMI: A network abstrac-
tion layer for parallel I/O. In: Proceedings of the Workshop on Communication
Architecture for Clusters (CACO05) in conjunction with the International Parallel
and Distributed Processing Symposium (IPDPS05). (2005)

